Iterated forcing Part 1: CS iteration

Martin Goldstern

Institute of Discrete Mathematics and Geometry, Technische Universität Wien

Hejnice, Feb 3, 2016

Iterated forcing Part 1: CS iteration

Outline

Iteration

Properness

CS iterations

Iterated forcing Part 1: CS iteration

Outline

Iteration

Properness

CS iterations

Iterated forcing Part 1: CS iteration

Notation

A forcing notion $(Q, \leq_Q, 1_Q)$ is a preorder with a largest element. (Usually not separative.) $q \leq p$: *q* is stronger than *p*, "has more information than *p*". (Note: stronger conditions are always alphabetically later.)

$q \leq^* p$ means:

- $\forall r \leq q$: *r* is compatible with *q*.
- Equivalently: For all generic filters G: $q \in G \Rightarrow p \in G$.
- ▶ Rephrased: $q \Vdash_Q \check{p} \in G_Q$.

Note: If $q \in Q$, and p is a Q-name of a condition in Q, then $q \leq p$ is still well-defined. *Surprisingly, this is useful!* We write q = p p for $q \leq p p$ and $p \leq q$.

Composition and Iteration

Forcing notions:

We identify P_n with a subset of P_{n+1} via

$$(q_0,\ldots,q_{n-1})\mapsto (q_0,\ldots,q_{n-1},1_{Q_n}).$$

So: $P_0 \subseteq P_1 \subseteq P_2 \subseteq \cdots$.

Composition, continued

 P_n = initial segment, $Q_n = n$ -th factor

P₁ := Q₀
 P₂ := Q₀ * Q₁
 P₃ := Q₀ * Q₁ * Q₂

Universes:

•
$$V_0 := V[G_0] = V$$
, where $G_0 \subseteq P_0$ is trivial.

•
$$V_1 := V[G_1], G_1 \subseteq P_1$$
 is V-generic

•
$$V_2 := V[G_2], G_2 \subseteq P_2 = Q_0 * Q_1$$
 is V-generic.

or: $V_2 := V[G(0)][G(1)] = V[G(0) * G(1),$ where

•
$$G(0) = G_{Q_0} \subseteq Q_0$$
 is V-generic,

• $G(1) = G_{Q_1} \subseteq Q_1[G(0)]$ is $V[Q_0]$ -generic.

Definition

A forcing iteration of length γ is a sequence $(P_{\alpha}, Q_{\alpha} : \alpha < \gamma)$ (often together with P_{γ}) where:

- P_{α} is a set of partial functions with domain $\subseteq \alpha$
- ≤_{P_α} is preorder on P_α, defined recursively, see below.
 Thus P_α becomes a forcing notion (with largest element Ø).
- For all α , Q_{α} is a P_{α} -name of a forcing notion
- For all $\alpha_1 < \alpha_2 \leq \gamma$: $P_{\alpha_1} \subseteq P_{\alpha_2}$.
- ► For $p', p \in P_{\alpha}$: $p' \leq_{P_{\alpha}} p$ iff for all $\beta < \alpha$: $p' \upharpoonright \beta \Vdash_{P_{\beta}} p'(\beta) \leq_{Q_{\alpha}} p(\beta)$. (If $p'(\beta)$ and/or $p(\beta)$ are undefined, replace them by $1_{Q_{\alpha}}$.)
- ▶ For all $\alpha < \gamma$: $P_{\alpha+1} = \{p : p \restriction \alpha \in P_{\alpha}, p \restriction \alpha \Vdash_{P_{\alpha}} p(\alpha) \in Q_{\alpha}\},$ so $P_{\alpha+1} = P_{\alpha} * Q_{\alpha}$ (up to a natural isomorphism).

Definition

A forcing iteration of length γ is a sequence ($P_{\alpha}, Q_{\alpha} : \alpha < \gamma$) together with P_{γ} where ...

Example

An iteration of length 2 is of the form $(P_0, Q_0, P_1, Q_1, P_2)$, where P_2 is "the same" as $Q_0 * Q_1$.

Notation

We will write $G_{P_{\alpha}}$ or G_{α} for V-generic filters on P_{α} , and $G_{Q_{\alpha}}$ or $G(\alpha)$ for $V[G_{\alpha}]$ -generic filters on $Q_{\alpha}[G_{\alpha}]$.

Limits, quotients

If $(P_{\alpha}, Q_{\alpha} : \alpha < \delta)$ is an iteration with P_{δ} undefined (a "topless" iteration), there are several ways to defined P_{δ} consistently (i.e., such that the definition of iteration is still satisfied):

- $P_{\delta} := \bigcup_{\alpha < \delta} P_{\alpha}$, the "direct limit"
- ► $P_{\delta} := \{ p \mid \forall \alpha : p \upharpoonright \alpha \in P_{\alpha} \}$, the "projective limit" or "full limit"

others ...

Definition

If $(P_{\alpha}, \tilde{Q}_{\alpha} : \alpha < \delta)$ is an iteration with (some) limit P_{δ} , then for all $\alpha \leq \delta$ we define a P_{α} -name P_{δ}/P_{α} (also called P_{δ}/G_{α}) by

$$P_{\delta}/P_{\alpha} := \{ p \in P_{\delta} : p \restriction \alpha \in G_{\alpha} \}$$

$$\Vdash_{\boldsymbol{P}_{\alpha}} \boldsymbol{P}_{\delta}/\boldsymbol{P}_{\alpha} := \{ \boldsymbol{p} \in \boldsymbol{P}_{\delta} : \boldsymbol{p} \upharpoonright \alpha \in \boldsymbol{G}_{\alpha} \}$$

This is a P_{α} -name of a forcing notion. (order: inherited) Note that " $p \upharpoonright \alpha$ carries no information (except for ensuring that $p \upharpoonright [\alpha, \delta)$ is in the quotient)", because they are all compatible. In other words, if $p \upharpoonright [\alpha, \delta) = p' \upharpoonright [\alpha, \delta)$, and both $p \upharpoonright \alpha, p' \upharpoonright \alpha$ are in G_{α} , then in P_{δ}/P_{α} we have $p = p' \upharpoonright \alpha$. So an alternative definition would be $P_{\delta}/P_{\alpha} := \{p \upharpoonright [\alpha, \delta) : p \in P_{\delta} : p \upharpoonright \alpha \in G_{\alpha}\}.$ Fact

- P_{δ}/P_{α} is (morally) an iteration of length $\delta \alpha$.
- P_{δ} is canonically (densely) embedded into $P_{\alpha} * (P_{\delta}/P_{\alpha})$.

(If δ is additively indecomposable, then the remainder iteration will be again of length δ . This allows "bookkeeping arguments".)

Iterated forcing Part 1: CS iteration

Outline

Iteration

Properness

CS iterations

Iterated forcing Part 1: CS iteration

Let *Q* be a forcing notion.

Definition

Q is proper iff:

- for every sufficiently closed countable set N containing Q (usually: N is a countable elementary submodel of a large initial segment of the universe),
- and for all $p \in Q \cap N$

there is $q \leq p$ which is *N*-generic.

Definition

"q is N-generic" means that

For all maximal antichains $A \in N$: $q \Vdash A \cap G \subseteq N$.

(Note that for uncountable antichains A, $A \setminus N$ will be nonempty. q forces that these sets are avoided by G.)

Properness rephrased

"Q is proper" means:

- ▶ for all countable $N \prec V$ (with $P \in N$), all $p \in Q \cap N$
- ► there is q ≤ p (typically q ∉ N) such that:

for all names α of ordinals with $\alpha \in N$ we have $q \Vdash \alpha \in N$. (I.e., for all generic *G* containing $q: \alpha[G] \in N$.)

We have: ccc \Rightarrow proper $\Rightarrow \omega_1^V$ stays uncountable. All forcing notions considered in this talk will satisfy the \aleph_2 -cc (using CH and the Δ -lemma), so no cardinals will be collapsed.

Properness via games

For any forcing notion Q and all $p \in Q$, the game G(Q, p) is defined as follows:

- There are ω many innings (rounds).
- In the *k*-th inning, player I (=bad player) first plays a name *A_k* of a countable set of ordinals. Player II (=good player) then responds with a countable set *B_k* of ordinals.
- At the end, player II wins if there is a condition q ≤ p forcing ∪_k A_k ⊆ B_k.

Lemma

Q is proper iff player II has a winning strategy for each G(Q, p). Equivalent variants: Either/Both players play only singletons. Properness game: Player I plays a name α_k of an ordinal, player II responds with a countable set B_k of ordinals. Player II wins if at the end there is a condition q forcing

$$\forall k : \mathfrak{a}_k \in \bigcup_n B_n$$

Proper⁺ness, a strong variant of properness (related to $(\omega, 1)$ -properness)

- In the *k*-th inning, player I plays a name α_k of an ordinal Player II responds with a countable set B_k of ordinals.
- At the end, player II wins if there is a condition q ≤ p forcing ∀k : α_k ∈ B_k.

Even stronger (because it implies ω^{ω} -bounding): each B_k is finite.

Outline

Iteration

Properness

CS iterations

Iterated forcing Part 1: CS iteration

An iteration (P_{α} , Q_{α} : $\alpha < \delta$) is called a countable support iteration (CS iteration) iff:

- For each limit ε < δ of cofinality ω, Pε is the full limit of (Pα, Qα : α < ε).</p>
- For each limit ε < δ of uncountable cofinality, P_ε is the direct limit of (P_α, Q_α : α < ε).</p>

For any such iteration we define its countable support limit P_{δ} in the obvious way (depending on $cf(\delta)$, as a direct or full limit). Equivalently: P_{δ} is the set of all partial functions p with countable domain such that for all α , $p \upharpoonright \alpha \Vdash p(\alpha) \in Q_{\alpha}$. For simplicity, in this talk we consider iterations ($P_n, Q_n : n < \omega$) (with CS limit P_{ω}) only.

Iteration theorem for CSI

Theorem (Properness preservation, weak version) Let $(P_n, Q_n : n < \omega)$ be a CS iteration with CS limit P_{ω} , and assume that $\Vdash_{P_n} "Q_n$ is proper". Then P_{ω} is proper. $(\forall N \ \forall p \in P_{\omega} \cap N \ \exists q \le p, (P_{\omega}, N)$ -generic.)

Theorem (Properness preservation, strong version)

Let P_n, Q_n, P_ω , N be as above. Assume that $n_0 < \omega$. Let p be a P_{n_0} -name. Assume that $q_{n_0} \in P_{n_0}$ is (P_{n_0}, N) -generic, and $q_{n_0} \leq^* p \upharpoonright n_0$. (I.e., $q_{n_0} \Vdash p \upharpoonright n_0 \in G_{n_0}$.) Then for all k with $n_0 \leq k \leq \tilde{\omega}$ there is a $q_k \leq^* p \upharpoonright k$ such that:

1.
$$q_k \upharpoonright n_0 = q_0$$
. (Moreover $\forall i < j: q_i = q_j \upharpoonright i$)

2. q_k is (P_k, N) -generic.

Easy to prove for successor steps $k \mapsto k + 1$.

Iterated forcing Part 1: CS iteration

Properness of P_{ω}

Given: $(P_n, Q_n : n \in \omega)$, $N \prec V$, $p \in P_{\omega} \cap V$, $q_0 \leq p \upharpoonright n_0$, q_0 is $(N, P_{n_0}$ -generic. Want: $q \in P_{\omega}$, $q \leq p$, *N*-generic, *q* continues q_0 . For notational simplicity let $n_0 := 0$.

- Strategy 1 Extend $q_0 \in P_0$ to $q_1 \in P_1$, still generic, and below $p \upharpoonright (1)$. Then to q_2 , etc.
- Strategy 2 Start with an enumeration $(\alpha_k : k \in \omega)$ of all ordinal names in *N*. In step *k*, make sure that q_k forces α_k into *N*.

Strategy 3 (blackboard, next slide)

Properness of P_{ω} , continued

GIVEN: $p_0 \in P_{\omega} \cap V$. WANT: $q \in P_{\omega}$, $q \leq p$, *N*-generic.

Proof.

Start with an enumeration $(\underline{\alpha}_k : k \in \omega)$ of all ordinal names in *N*. Find in *N* a Q_0 -name of a condition $\underline{p}_1 \in P_{\omega}/P_1$ such that the following is forced:

If $p \upharpoonright 1 \in G_1$, then $p_1 \leq p_0$. Moreover, p_1 decides (in P_{ω}/P_1) the value of α_1 as β_1 . (Recall: P_{ω} -name, P_1 -name.)

Now find $q_1 \in P_1$, generic, stronger than $p_0 \upharpoonright 1$. q forces: $\beta_1 \in N$, $p_1 \leq p_0$, $p_1 \in P_{\omega}/P_1$. Continue by first finding $p_2 \in P_{\omega}/P_2$, then q_2 extending q_1 . Check that $q_{\omega} = \bigcup_n q_n$ is P_{ω} -generic.

Properness preservation using games

Start with a condition *p*.

Player I plays a P_{ω} -name $\underline{\alpha}_0$, player II plays a condition $p_0 \le p$ forcing $\underline{\alpha}_0 = \underline{\beta}_{00}$.

Player I plays a P_{ω} -name $\underline{\alpha}_1$, player II plays (in V^{P_1} , assuming $p_0 | 1 \in G_1$) a condition $p_1 \in P_{\omega}/P_1$, $p_1 \leq p_0$, forcing $\alpha_1 = \beta_{11}$. NOTE: p_1 , β_{11} are P_1 -names!)

Moreover, player II starts the game $G(Q_0, p_0(0))$ and replies to the Q_0 -name β_{11} with an ordinal β_{10} .

Player I plays a P_{ω} -name \underline{q}_2 , player II plays (in V^{P_2} , assuming $p_1 | 2 \in G_2$) a condition $\underline{p}_2 \in P_{\omega}/P_2$, $\underline{p}_2 \leq \underline{p}_1$, forcing $\alpha_1 = \underline{\beta}_{22}$. Moreover, player II starts (in V^{P_1}) the game $G(Q_1, p_2(2))$ and replies to the $Q_0 * Q_1$ -name $\underline{\beta}_{22}$ with a Q_0 -name $\underline{\beta}_{21}$. Finally, replies in $G(Q_0, p_1(1))$ to $\underline{\beta}_{21}$ with an ordinal $\underline{\beta}_{20}$. Etc. Winning all games yields a generic condition.

Iterated forcing Part 1: CS iteration

WARNING:

Sometimes theorems are important. Sometimes proofs are important.

This proof is important, because many later proofs of stronger theorems are just more sophisticated versions of this proof.

(Compare: proof of forcing theorem.)

Preservation theorems

Let P_{ω} be the CS-limit of $(P_n, Q_n : n < \omega)$.

Theorem (weak version, P/P)

If all P_n are nice, then P_{ω} is nice.

Theorem (strong version, Q/P)

IF \forall *n* : \Vdash_{P_n} "*Q_n is nice*", *THEN P*_{ω} *is nice*.

Note: Necessary for this to work: the condition

If Q_0 is nice and $\Vdash_{Q_0} Q_1$ is nice, then $Q_0 * Q_1$ is nice

should be trivial. (Or at least: true.) These theorems are true for many versions of "nice", such as: " ω^{ω} -bounding", or "Laver property".